Backpaper Examination Physics IV - B. Math III .

Max. Marks 100

Time:3 hrs.

1. (i) In $\mathcal{H} = L^2(\mathbb{R}^3)$, along with usual position and momentum operators P_j, Q_k (j, k = 1, 2, 3), define the time-reversal operator T by:

$$(Tf)(x) = \overline{f(x)} \qquad \forall f \in \mathcal{H}.$$

Show that T is an antilinear-unitary operator, i.e. $T(\alpha f + g) = \bar{\alpha}Tf + Tg, T^2 = I$, and that $(P_jT + TP_j)f = (Q_kT - TQ_k)f = 0$ for suitable $f \in \mathcal{H}$ for all j, k.

(ii) Let H be a self-adjoint Hamiltonian operator in \mathcal{H} and $U_t = exp$ $(-iHt), t \in \mathbb{R}$ its associated unitary evolution. If H is of the canonical form $H = \frac{1}{2} \sum_j P_j^2 + V(\underline{Q})$, for some real-valued function V on \mathbb{R}^3 , show that

$$TU_t = U_t^* T \quad \forall t \in \mathbb{R}.$$

(iii) Let the angular momentum operators L_j (j = 1, 2, 3) be defined by the cyclic permutations: $L_1 = Q_2 P_3 - Q_3 P_2$, $L_2 = Q_3 P_1 - Q_1 P_3$ and $L_3 = Q_1 P_2 - Q_2 P_1$. Show that $TL_j = -L_j T$ for each j.

2. Let A be a linear operator in a separable infinite-dimensional Hilbert space \mathcal{H} (with orthonormal basis $\{e_j\}_{j=1}^{\infty}$) given by

$$Ae_j = j^{-1/4}e_j \quad 1 \le j \le \infty$$

and by linearly extending it.

(i) Show that A is a bounded operator and estimate its norm.

(ii) Show that A is a compact operator, i.e. it maps the unit ball $B_1 = \{x \in \mathcal{H} : ||x|| \le 1\}$ into a set whose closure is compact.

(Hint: Show that the image of the unit ball has the Bolzano-Weirstrass property).

3. In 3-dimensional Euclidean space, define the angular momentum operators $L_1 = Q_2 P_3 - P_3 Q_2, L_2 = Q_3 P_1 - P_1 Q_3, L_3 = Q_1 P_2 - Q_2 P_1$ where $\{Q_j\}_{j=1}^3$ and $\{P_j\}_{j=1}^3$ are the position and momentum operators in the Hilbert space $L^2(\mathbb{R}^3)$.

(i) Establish the commutation relations amongst L_1, L_2 and L_3 .

(ii) Show that $\underline{L}^2 \equiv \sum_{j=1}^3 L_j^2$ commutes with $\{L_j\}_{j=1}^3$.

(iii) Define $L_{\pm} \equiv L_1 \pm iL_2$. If $\psi_{\ell,m} \in \mathcal{H}$, (where $\ell \in \{0, \frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, \dots, \}$ and $-\ell \leq m \leq \ell$), are unit vectors such that

$$\underline{L}^2 \psi_{\ell,m} = \ell(\ell+1)\psi_{\ell,m}$$

and

$$L_3\psi_{\ell,m} = m\psi_{\ell,m}$$

show that $L_{\pm}\psi_{\ell,m} = C_{\pm}(\ell,m)\psi_{\ell,(m\pm 1)}$ for $-\ell \leq m \leq \ell$, and determine the constants $C_{\pm}(\ell,m)$.